Formation and Evolution of Chondritic Components

Chondrites are cosmic sedimentary rocks, consisting of materials formed in a wide range of temperature in the early Solar System.  Some chondritic components experienced thermal metamorphism and aqueous alteration on their parent bodies.  I do laboratory experiments and analysis of chondritic components to constrain the formation conditions of chondritic components both in the early Solar System and on their parent bodies.

Related publications

Tachibana S., Kamizuka T., Hirota T., Sakai N., Oya Y., Takigawa A. and Yamamoto S. (2019) Spatial distribution of AlO in a high mass protostar candidate Orion Source I. Astrophys. J. Letters in press.

Orthous-Daunay F.-R., Piani L., Flandinet L., Thissen R., Wolters C., Vuitton V., Poch O., Moynier F., Sugawara I., Naraoka H. and Tachibana S. (2019) Ultraviolet-photon fingerprints on chondritic large organic molecules. Geochem. J. 53, 21-32. doi:10.2343/geochemj.2.0544

Isono Y., Tachibana S., Naraoka H., Orthous-Daunay F.-R., Piani L. and Kebukawa Y. (2019) Bulk chemical characteristics of soluble polar organic molecules formed through condensation of formaldehyde: Comparison with soluble organic molecules in Murchison meteorite. Geochem. J. 53, 41-51. doi:10.2343/geochemj.2.0551

Yamamoto D., Kuroda M., Tachibana S., Sakamoto N. and Yurimoto H. (2018) Oxygen isotopic exchange between amorphous silicate and water vapor and its implications to oxygen isotopic evolution in the early Solar System. Astrophys. J. 865, 98 (14pp). doi.org/10.3847/1538-4357/aadcee

Yamamoto D. and Tachibana S. (2018) Water vapor pressure dependence of crystallization kinetics of amorphous forsterite. ACS Earth Space Chem. 2, 778-786. doi:10.1021/acsearthspacechem.8b00047

Yabuta H., Noguchi T., Itoh S., Nakamura T., Miyake A., Tsujimoto S., Ohashi N., Sakamoto N., Hashiguchi M., Abe K., Okubo A., Kilcoyne A. L. D., Tachibana S., Okazaki R., Terada K., Ebihara M. and Nagahara H. (2017) Formation of an ultracarbonaceous Antarctic micrometeorite through minimal aqueous alteration in a small porous icy body. Geochim. Cosmochim. Acta 214, 172-190. doi:10.1016/j.gca.2017.06.047

Telus M., Huss G. R., Nagashima K., Ogliore R. C. and Tachibana S. (2017) In situ 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 221, 342-357. doi:10.1016/j.gca.2017.06.013

Noguchi T., Yabuta H., Itoh S., Sakamoto N., Mitsunari T., Okubo A., Okazaki R., Nakamura T., Tachibana S., Terada K., Ebihara M., Imae N., Kimura M. and Nagahara H. (2017) Variation of mineralogy and organic material during the early stages of aqueous activity recorded in Antarctic micrometeorites. Geochim. Cosmochim. Acta 208, 119-144. doi:10.1016/j.gca.2017.03.034

Kebukawa Y., Chan Q. H. S., Tachibana S., Kobayashi K. and Zolensky M. E. (2017) One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity. Science Advances 3, e1602093. doi:10.1126/sciadv.1602093

Okazaki R., Noguchi T., Tsujimoto S., Tobimatsu Y. Nakamura T., Ebihara M., Itoh S., Nagahara H., Tachibana S., Terada K. and Yabuta H. (2015) Mineralogy and noble gas isotopes of micrometeorites collected from Antarctic snow. Earth, Planets and Space 67, doi:10.1186/s40623-015-0261-8

Takigawa A., Tachibana S., Huss G. R., Nagashima K., Makide K., Krot A. N. and Nagahara H. (2014) Morphology and crystal structures of solar and presolar Al2O3 in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 124, 309-327. doi:10.1016/j.gca.2013.09.013

Telus M., Huss G. R., Ogliore R. C., Nagashima K. and Tachibana S. (2012) Recalculation of data for short-lived radionuclide systems using less-biased ratio estimation. Meteorit. Planet. Sci. 47, 2013-2030. doi:10.1111/maps.12041

Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H. and Valley J. W. (2010) High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 6610-6635. doi:10.1016/j.gca.2010.08.011

Mishra R. K., Goswami J. N., Tachibana S., Huss G. R. and Rudraswami N. G. (2010)60Fe and 26Al in chondrules from unequilibrated chondrites: Implications for early solar system processes. Astrophys. J. Letters 714, L217-L221. doi:10.1088/2041-8205/714/2/L217

Tachibana S., Huss G. R., Kita N. T., Shimoda G. and Morishita Y. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophys. J. Letters 639, L87-L90. doi:10.1086/503201

Tachibana S. (2006) Chondrule formation and evolution of the early solar system. J. Mineral. Petrol. Sci. 101, 37-47. doi:10.2465/jmps.101.37

Kita N. T., Huss G. R., Tachibana S., Amelin Y., Nyquist L. E. and Hutcheon I. D. (2005) Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. in Chondrites and the Protoplanetary Disk (eds. A. N. Krot, E. R. D. Scott and B. Reipurth), San Francisco: Astronomical Society of the Pacific, 558-587.

Nakamoto T., Hayashi M. R., Kita N. T. and Tachibana S. (2005) Chondrule-forming shock waves in the solar nebula by X-ray flares. in Chondrites and the Protoplanetary Disk (eds. A. N. Krot, E. R. D. Scott and B. Reipurth), San Francisco: Astronomical Society of the Pacific, 883-892.

Tachibana S. and Huss G. R. (2005) Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochim. Cosmochim. Acta, 69, 3074-3097. doi:10.1016/j.gca.2004.06.025

Nakamoto T., Kita N. T. and Tachibana S. (2005) Chondrule age distribution and rate of heating events for chondrule formation. Antarc. Met. Res. 18, 253-272.

Hua X., Huss G. R., Tachibana S. and Sharp T. G. (2005) Oxygen, silicon, and Mn-Cr isotopes of fayalite in the oxidized Kaba CV3 chondrite: Constraints for its formation history. Geochim. Cosmochim. Acta, 69, 1333-1348. doi:10.1016/j.gca.2004.08.015

Tachibana S., Nagahara H., Mostefaoui S. and Kita N. T. (2003) Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteoritics Planet. Sci. 38, 939-962. doi:10.1111/j.1945-5100.2003.tb00289.x

Tachibana S. and Huss G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophys. J. Letters 588, L41-L44. doi:10.1086/375362

Mostefaoui S., Kita N. T., Togashi S., Tachibana S., Nagahara H. and Morishita Y. (2002) The relative formation ages of ferromagnesian chondrules inferred from their initial 26Al/27Al ratios. Meteoritics Planet. Sci. 37, 421-438. doi:10.1111/j.1945-5100.2002.tb00825.x

Tachibana S., Tsuchiyama A. and Nagahara H. (2002) Experimental study of incongruent evaporation kinetics of enstatite in vacuum and in hydrogen gas. Geochim. Cosmochim. Acta 66, 713-728. doi:10.1016/S0016-7037(01)00797-9

© 2017– Shogo Tachibana, UTokyo Organization for Planetary Space Science (UTOPS), Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
Powered by Webnode
Create your website for free! This website was made with Webnode. Create your own for free today! Get started