Reactions in the Evolving Earth and Planetary Systems
Kinetics! It is important to understand chemical reactions occurring in the Earth and planetary systems in the context of kinetics for better understanding of their evolution. I do laboratory experiments to obtain kinetics of reactions.
Related publications
Kuroda M., Tachibana S., Sakamoto N. and Yurimoto H. (2019) Fast diffusion path for water in silica glass. Am. Mineral. 104, 385-390. doi.org/10.2138/am-2019-6802
Noguchi M., Tachibana S. and Nagahara H. (2019) Diffusivity and solubility of methane in ice Ih. Geochem. J. 53, 83-89. doi:10.2343/geochemj.2.0537
Yamamoto D., Kuroda M., Tachibana S., Sakamoto N. and Yurimoto H. (2018) Oxygen isotopic exchange between amorphous silicate and water vapor and its implications to oxygen isotopic evolution in the early Solar System. Astrophys. J. 865, 98 (14pp). doi.org/10.3847/1538-4357/aadcee
Yamamoto D. and Tachibana S. (2018) Water vapor pressure dependence of crystallization kinetics of amorphous forsterite. ACS Earth Space Chem. 2, 778-786. doi:10.1021/acsearthspacechem.8b00047
Kuroda M., Tachibana S., Sakamoto N., Nakamura M., Okumura S. and Yurimoto H. (2018) Water diffusion in silica glass through pathways formed by hydroxyls. Am. Mineral. 103,412-417. doi:10.2138/am-2018-6208
Takigawa
A., Tachibana S., Nagahara H. and Ozawa K. (2015) Evaporation and
condensation kinetics of corundum: The origin of the 13-μm feature of
oxygen-rich AGB stars. Astrophys. J. Suppl., 218, doi:10.1088/0067-0049/218/1/2
Tachibana
S., Tamada S., Kawasaki H., Ozawa K. and Nagahara H. (2013)
Interdiffusion of Mg-Fe in olivine at 1,600-1,400°C and 1 atm total
pressure. Phys. Chem. Min. 40, 511-519. doi:10.1007/s00269-013-0588-2
Takigawa A. and Tachibana S. (2012) Crystallographically anisotropic shape of forsterite: New probe for evaluating dust formation history from infrared spectroscopy. Astrophys. J. 750, 149-164. doi:10.1088/0004-637X/750/2/149
Tachibana
S., Nagahara H., Ozawa K., Ikeda, Y., Nomura, R., Tatsumi, K., and Joh,
Y. (2011) Kinetic condensation and evaporation of metallic iron and
implications for metallic iron dust formation. Astrophys. J. 736, 16. doi:10.1088/0004-637X/736/1/16
Nagahara H., Ozawa K., Ogawa R., Tachibana S. and Chiba H. (2009) Laboratory condensation and reaction of silicate dust. In Cosmic Dust - Near and Far (Eds. Th. Henning, E. Grun and J. Steinacker), ASP Conf. Ser., p.403-410.
Takigawa A., Tachibana S., Nagahara H., Ozawa K. and Yokoyama M. (2009) Anisotropic evaporation of forsterite and its implication for dust formation conditions in circumstellar environments. Astrophys. J. Letters 707, L97-L101. doi:10.1088/0004-637X/707/1/L97
Yamada M., Tachibana S., Nagahara H. and Ozawa K. (2006) Anisotropy of Mg isotopic fractionation during evaporation and Mg self-diffusion of forsterite in vacuum. Planetary and Space Science 54, 1096-1106. doi:10.1016/j.pss.2006.05.020
Nakano H., Kouchi A., Tachibana S. and Tsuchiyama A. (2003) Evaporation of interstellar organic materials in the solar nebula. Astrophys. J. 592, 1252-1262. doi:10.1086/375856
Tachibana S., Tsuchiyama A. and Nagahara H. (2002) Experimental study of incongruent evaporation kinetics of enstatite in vacuum and in hydrogen gas. Geochim. Cosmochim. Acta 66, 713-728. doi:10.1016/S0016-7037(01)00797-9
Tachibana S., Tsuchiyama A. and Watanabe S. (1999) Evaporation of Fe and FeS in the active stage of the primordial solar nebula, and Fe/S fractionation. Antarc. Met. Res. 12, 213-242.
Tachibana S. and Tsuchiyama A. (1998) Incongruent evaporation of troilite (FeS) in the primordial solar nebula; an experimental study. Geochim. Cosmochim. Acta 62, 2005-2022. doi:10.1016/S0016-7037(98)00122-7
Tsuchiyama A., Takahashi T. and Tachibana S. (1998) Evaporation rates of forsterite in the system Mg2SiO4-H2. Mineral.J. 20, 113-126. doi:10.2465/minerj.20.113